Maximal $$L_{p}$$ L p -regularity of non-local boundary value problems
نویسندگان
چکیده
منابع مشابه
Maximal regularity and quasilinear parabolic boundary value problems
∂tw +A(v)w = f(v) in J̊ , w(0) = 0 has a unique solution w = w(v) ∈W(J). Clearly, a fixed point of the map v 7→ w(v) is a solution of (1). Fixed point arguments of this type are, of course, omnipresent in the study of evolution equations of type (1). The new feature of our work, which distinguishes it from all previous investigations, is that we assume that W(J) is a maximal regularity space and...
متن کاملThe Study of Some Boundary Value Problems Including Fractional Partial Differential Equations with non-Local Boundary Conditions
In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations (FPDE) with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...
متن کاملBesov Regularity for Elliptic Boundary Value Problems
This paper studies the regularity of solutions to boundary value problems for Laplace's equation on Lipschitz domains in R d and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the eeciency of such nonlinear approximation in L p (() are the Besov spaces B (L (()), := (=d + 1=p) ?1. Thus, the regularity of the so...
متن کاملOn Maximal L-regularity
The aim of this paper is to propose weak assumptions to prove maximal L q regularity for Cauchy problem : du dt (t) − Lu(t) = f (t). Mainly we only require " off-diagonal " estimates on the real semigroup (e tL) t>0 to obtain maximal L q regularity. The main idea is to use a one kind of Hardy space H 1 adapted to this problem and then use interpolation results. These techniques permit us to pro...
متن کاملRegularity estimates for elliptic boundary value problems in Besov spaces
We consider the Dirichlet problem for Poisson’s equation on a nonconvex plane polygonal domain Ω. New regularity estimates for its solution in terms of Besov and Sobolev norms of fractional order are proved. The analysis is based on new interpolation results and multilevel representations of norms on Sobolev and Besov spaces. The results can be extended to a large class of elliptic boundary val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2014
ISSN: 0026-9255,1436-5081
DOI: 10.1007/s00605-014-0669-4